

PIPE INSULATION MANUFACTURING PROCESS

Background

A large *construction materials company* that produces *pipe insulation* has *hundreds of different products* that need to be *produced on a daily, weekly, or monthly basis.* Each *product is described* by the type of material, the *internal pipe diameter and the thickness of the insulation*, and is manufactured on one or more of several available *production lines.* The production facility *works on 365x24 schedule.*

Highlights:

- 500+ SKUs
- Multiple production lines
- Inventory constraints (minimum WIP, maximum storage)

The challenge

The company was dealing with:

- Many "emergency", *last-minute small orders*
- Limited number of production capacity thru' shared "mandrels" (3 for all lines)
- They were *operating at then-current capacity* but could sell more, therefore needed to *maximize production*

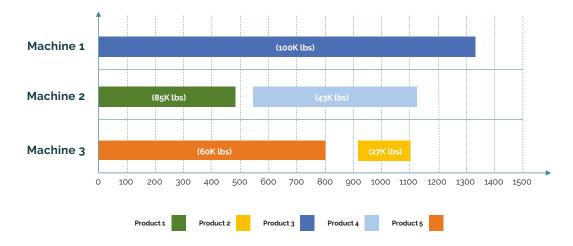
Objective:

• *Increase throughput*, without adding any manufacturing capacity, and *reduce overtime costs.*

Current scheduling limitation

Following is a *simplification for example*; The company must *produce five products* for which *demand can fluctuate greatly from one day to the next*. There is a *minimum level of finished goods* that should be *on-hand* at the end of each day *to avoid stock-outs the following day*. At the same time, there is *limited storage capacity* in the plant, so maximum *levels of inventory must also be enforced*. The *production requirements*, and *machine assignment constraints*, are shown as follows:

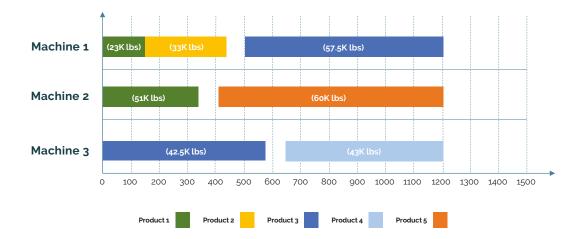
(A) Product ID	(B) Processing Rate (lbs/minute)	(C) Day's Demand (lbs)	(D) Inventory On-hand (lbs)	(E) Minimum Inventory (lbs)	(F) Maximum Inventory (lbs)	(G) Machine Assignments
1	150	66,000	25,000	33,000	50,000	1, 2
2	150	27,000	20,000	20,000	35,000	1, 2
3	75	90,000	35,000	45,000	50,000	1, 2, 3
4	75	48,000	35,000	30,000	50,000	1, 2, 3
5	75	60,000	40,000	40,000	45,000	2, 3


• Note that the inventory on-hand for Products 1 and 3 is lower than the minimum allowed, presumably due to disruptions in the previous day's production, so this difference needs to be addressed.

There are also *sequence-dependent changeover times* incurred when *changing a machine from production* of one product to another, as shown *(in minutes)* in Table 2.

Product	1	2	3	4	5
1		0	60	60	60
2	120		60	120	180
3	180	120		60	120
4	180	180	120		120
5	60	180	120	120	

Table 2: changeover times


The company's *current scheduling approach* was an entirely *manual process*, carried out on a series of *complex spreadsheets*. Taking all the above into account, the existing *manual scheduling* would produce a schedule as shown below, which incurs *133 minutes of overtime costs* on Machine 1.

OptPro Solution

OptPro combines *mathematical optimization technology* with a digital twin representation of the actual process.

In the **OptPro-driven** schedule, as can be seen, *all machines finish their production at exactly 20 hours* (1200 minutes). To achieve this, *both Products 1 and 3 are split into two batches*, to be *produced on different machines*. Even so, the total changeover cost incurred in this plan is the same as in the current schedule *(so no worse)* with 180 minutes; however, *the total cost is much less*, because the *company avoids paying its operators* for more than 133 minutes of overtime.

Results

This simple example illustrates *the benefits* of the **OptPro** approach in *terms of maximizing throughput and minimizing costs*, including changeover costs and *operational expenses* related to *overtime*.

Actual **OptPro** results at the company indicated a *g% increase in throughput and elimination of required overtime*, all with existing manufacturing capacity and *no additional Capex required*.

2241 17th Street Boulder, CO 80302

(2) 303 447 3255

www.OptTek.com